Paper Reference(s)

6665/01 **Edexcel GCE** Core Mathematics C3 **Advanced Level**

Thursday 14 June 2007 – Afternoon Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Green)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C3), the paper reference (6665), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. There are 8 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

- **1.** Find the exact solutions to the equations
 - (a) $\ln x + \ln 3 = \ln 6$,

(2)

(b) $e^x + 3e^{-x} = 4$.

(4)

2.

$$f(x) = \frac{2x+3}{x+2} - \frac{9+2x}{2x^2+3x-2}, \quad x > \frac{1}{2}.$$

(a) Show that f (x) = $\frac{4x-6}{2x-1}$.

(7)

(b) Hence, or otherwise, find f'(x) in its simplest form.

(3)

- **3.** A curve *C* has equation $y = x^2 e^x$.
 - (a) Find $\frac{dy}{dx}$, using the product rule for differentiation.

(3)

(b) Hence find the coordinates of the turning points of C.

(3)

(c) Find $\frac{d^2y}{dx^2}$.

(2)

(d) Determine the nature of each turning point of the curve C.

(2)

$$f(x) = -x^3 + 3x^2 - 1.$$

(a) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)}.$$
 (2)

(b) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3 - x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

(2)

(c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places.

(3)

5. The functions f and g are defined by

$$f: \mapsto \ln(2x-1), \quad x \in \mathbb{R}, \quad x > \frac{1}{2},$$

$$g: \mapsto \frac{2}{x-3}, \qquad x \in \mathbb{R}, \ x \neq 3.$$

(a) Find the exact value of fg(4).

(2)

(b) Find the inverse function $f^{-1}(x)$, stating its domain.

(4)

(c) Sketch the graph of y = |g(x)|. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis.

(3)

(d) Find the exact values of x for which $\left| \frac{2}{x-3} \right| = 3$.

(3)

6. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin (x + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

(4)

(b) Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$.

(2)

(c) Solve, for $0 < x < 2\pi$, the equation

$$3\sin x + 2\cos x = 1,$$

giving your answers to 3 decimal places.

(5)

7. (*a*) Prove that

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90n^{\circ}.$$

(4)

(b) Sketch the graph of $y = 2 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$.

(2)

(c) Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 3$$

giving your answers to 1 decimal place.

(6)

8. The amount of a certain type of drug in the bloodstream *t* hours after it has been taken is given by the formula

$$x = De^{-\frac{1}{8}t},$$

where x is the amount of the drug in the bloodstream in milligrams and D is the dose given in milligrams.

A dose of 10 mg of the drug is given.

(a) Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places.

(2)

A second dose of 10 mg is given after 5 hours.

(b) Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places.

(2)

No more doses of the drug are given. At time *T* hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg.

(c) Find the value of T.

(3)

TOTAL FOR PAPER: 75 MARKS

END

June 2007 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ or $\ln \left(\frac{3x}{6}\right) = 0$	M1
	x = 2 (only this answer)	A1 (cso) (2)
(b)	$(e^x)^2 - 4e^x + 3 = 0$ (any 3 term form)	M1
	$(e^x - 3)(e^x - 1) = 0$	
	$e^x = 3$ or $e^x = 1$ Solving quadratic	M1 dep
	$(e^{x})^{2} - 4e^{x} + 3 = 0 \text{(any 3 term form)}$ $(e^{x} - 3)(e^{x} - 1) = 0$ $e^{x} = 3 \text{or} e^{x} = 1 \text{Solving quadratic}$ $x = \ln 3, x = 0 \text{(or ln 1)} \mapsto$	M1 A1 (4)
		(6 marks)

Notes: (a) Answer x = 2 with no working or no incorrect working seen: M1A1

Note:
$$x = 2$$
 from $\ln x = \frac{\ln 6}{\ln 3} = \ln 2$ M0A0

$$\ln x = \ln 6 - \ln 3 \implies x = e^{(\ln 6 - \ln 3)}$$
 allow M1, $x = 2$ (no wrong working) A1 \mapsto

(b) 1^{st} M1 for attempting to multiply through by e^x : Allow y, X, even x, for e^x 2^{nd} M1 is for solving quadratic as far as getting two values for e^x or y or X etc 3^{rd} M1 is for converting their answer(s) of the form $e^x = k$ to x = lnk (must be exact) A1 is for ln3 and ln1 or 0 (Both required and no further solutions)

2. (a)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage	B1
	$f(x) = \frac{(2x+3)(2x-1)-(9+2x)}{(2x-1)(x+2)}$ f.t. on error in denominator factors	M1, A1√
	(need not be single fraction) Simplifying numerator to quadratic form →	M1
	Correct numerator $= \frac{4x^2 + 2x - 12}{[(2x-1)(x+2)]}$	A1
	Factorising numerator, with a denominator $=\frac{2(2x-3)(x+2)}{(2x-1)(x+2)}$ o.e.	M1
	$=\frac{4x-6}{2x-1} \qquad (*)$	A1 cso (7)
Alt.(a)	$2x^2 + 3x - 2 = (2x - 1)(x + 2)$ at any stage B1	
, ,	$f(x) = \frac{(2x+3)(2x^2+3x-2) - (9+2x)(x+2)}{(x+2)(2x^2+3x-2)}$ M1A1 f.t.	
	$= \frac{4x^3 + 10x^2 - 8x - 24}{(x+2)(2x^2 + 3x - 2)}$	
	$= \frac{2(x+2)(2x^2+x-6)}{(x+2)(2x^2+3x-2)} \text{ or } \frac{2(2x-3)(x^2+4x+4)}{(x+2)(2x^2+3x+2)} \text{ o.e.}$	
	Any one linear factor \times quadratic factor in numerator M1, A1	
	$= \frac{2(x+2)(x+2)(2x-3)}{(x+2)(2x^2+3x-2)} \text{ o.e.}$ M1	
	$= \frac{2(2x-3)}{2x-1} \qquad \frac{4x-6}{2x-1} \qquad (*)$	
(b)	Complete method for $f'(x)$; e.g $f'(x) = \frac{(2x-1)\times 4 - (4x-6)\times 2}{(2x-1)^2}$ o.e	M1 A1
	$= \frac{8}{(2x-1)^2} \text{or} 8(2x-1)^{-2}$	A1 (3)
	Not treating f ⁻¹ (for f') as misread	(10 marks)

Notes:

(a)
$$1^{\text{st}}$$
 M1 in either version is for correct method
$$1^{\text{st}} \text{ A1 Allow } \frac{2x+3(2x-1)-(9+2x)}{(2x-1)(x+2)} \text{ or } \frac{(2x+3)(2x-1)-9+2x}{(2x-1)(x+2)} \text{ or } \frac{2x+3(2x-1)-9+2x}{(2x-1)(x+2)}$$
 (fractions)

 2^{nd} M1 in (main a) is for forming 3 term quadratic in **numerator** 3^{rd} M1 is for factorising their quadratic (usual rules); factor of 2 need not be extracted

(*) A1 is given answer so is cso

Alt:(a) 3rd M1 is for factorising resulting quadratic

(b) SC: For M allow \pm given expression or one error in product rule

Alt: Attempt at $f(x) = 2 - 4(2x - 1)^{-1}$ and diff. M1; $k(2x - 1)^{-2}$ A1; A1 as above

Accept $8(4x^2 - 4x + 1)^{-1}$.

Differentiating original function – mark as scheme.

Question Number	Scheme	Marks
3. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$	M1,A1,A1 (3)
(<i>b</i>)	If $\frac{dy}{dx} = 0$, $e^x(x^2 + 2x) = 0$ setting $(a) = 0$	M1
(c)	Scheme $\frac{dy}{dx} = x^{2}e^{x} + 2xe^{x}$ If $\frac{dy}{dx} = 0$, $e^{x}(x^{2} + 2x) = 0$ setting $(a) = 0$ $[e^{x} \neq 0] \qquad x(x+2) = 0 \qquad x = -2 \qquad x = 0, y = 0 \text{and} x = -2, y = 4e^{-2} (= 0.54)$ $\frac{d^{2}y}{dx^{2}} = x^{2}e^{x} + 2xe^{x} + 2xe^{x} + 2e^{x} \qquad \left[= (x^{2} + 4x + 2)e^{x} \right]$ $x = 0, \frac{d^{2}y}{dx^{2}} > 0 (=2) \qquad x = -2, \frac{d^{2}y}{dx^{2}} < 0 [= -2e^{-2} (= -0.270)]$	$A1 \\ A1 \sqrt{3}$ $M1, A1$ (2)
(<i>d</i>)	$x = 0$, $\frac{d^2y}{dx^2} > 0$ (=2) $x = -2$, $\frac{d^2y}{dx^2} < 0$ [= -2e ⁻² (= -0.270)] M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's x value(s) from (b)	M1
	∴ minimum ∴ maximum	A1 (cso) (2)
Alt.(d)	For M1: Evaluate, or state sign of, $\frac{dy}{dx}$ at two appropriate values – on either side of at least one of their answers from (b) or Evaluate y at two appropriate values – on either side of at least one of their answers from (b) or Sketch curve	
	•	(10 marks)

Notes: (a) M for attempt at f(x)g'(x) + f'(x)g(x)

1st A1 for one correct, 2nd A1 for the other correct.

Note that x^2e^x on its own scores no marks

- (b) 1^{st} A1 (x = 0) may be omitted, but for 2^{nd} A1 both sets of coordinates needed; f.t only on candidate's x = -2
- (c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
- (d) A1 is cso; x = 0, min, and x = -2, max and no incorrect working seen, or (in alternative) sign of $\frac{dy}{dx}$ either side correct, or values of y appropriate to t.p.

Need only consider the quadratic, as may assume $e^x > 0$.

If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

4. (a) $x^2(3-x)-1=0$ o.e. (e.g. $x^2(-x+3)=1$) M1 $x=\sqrt{\frac{1}{3-x}}$ (**) Note (**), answer is given: need to see appropriate working and A1 is cso [Reverse process: Squaring and non-fractional equation M1, form $f(x)$ A1] (b) $x_2=0.6455$, $x_3=0.6517$, $x_4=0.6526$ 1^{18} B1 is for one correct, 2^{nd} B1 for other two correct If all three are to greater accuracy, award B0 B1 (c) Choose values in interval $(0.6525, 0.6535)$ or tighter and evaluate both $(0.6525)=0.0005$ (372 $(0.6535)=0.002$ (101 At least one correct "up to bracket", i.e. -0.0005 or 0.002 Change of sign, $\therefore x=0.653$ is a root (correct) to 3 d.p. A1 A1 (ii) Conclusion: Two values correct to 4 d.p., $x=0.6528$ ($x=0.6528$), $x=0.65268$, $x=0.6527$, $x=0.6525$ and $x=0.6528$. $x=0.6528$. $x=0.6528$. A1 ($x=0.6528$) A2 ($x=0.6528$) A1 ($x=0.$	Question Number	Scheme			s
Note (**), answer is given: need to see appropriate working and A1 is cso [Reverse process: Squaring and non-fractional equation M1, form $f(x)$ A1] (b) $x_2 = 0.6455$, $x_3 = 0.6517$, $x_4 = 0.6526$ Γ^8 B1 is for one correct, 2^{nd} B1 for other two correct if all three are to greater accuracy, award B0 B1 (c) Choose values in interval $(0.6525, 0.6535)$ or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ (101 A1 least one correct "up to bracket", i.e. -0.0005 or 0.002 Change of sign, $\therefore x = 0.653$ is a root (correct) to 3 d.p. Requires both correct "up to bracket" and conclusion as above Alt (i) Continued iterations at least as far as x_6 M1 $x_5 = 0.65268$, $x_6 = 0.6527$, $x_7 =$ two correct to at least 4 s.f. A1 Conclusion: Two values correct to 4 d.p., so 0.653 is root to 3 d.p. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 10 10 10 10 10 10 10 10	4. (a)	$x^{2}(3-x)-1=0$ o.e. (e.g. $x^{2}(-x+3)=1$)		M1	
[Reverse process: Squaring and non-fractional equation M1, form $f(x)$ A1] (b) $x_2 = 0.6455, x_3 = 0.6517, x_4 = 0.6526$ 1^{st} B1 is for one correct, 2^{nd} B1 for other two correct If all three are to greater accuracy, award B0 B1 (c) Choose values in interval $(0.6525, 0.6535)$ or tighter and evaluate both $(0.6525) = -0.0005 (372 f(0.6535) = 0.002 (101 A1 least one correct 'up to bracket', i.e. -0.0005 or 0.002 Change of sign, \therefore x = 0.653 is a root (correct) to 3 d.p. Alt (i) Continued iterations at least as far as x_6 M1 x_5 = 0.65268, x_6 = 0.6527, x_7 = two correct to at least 4 s.f. A1 conclusion: Two values correct to 4 d.p., so 0.653 is root to 3 d.p. A1 If use g(0.6525) = 0.6527, x_0 = two correct to at least 4 s.f. A1 conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 5. (a) Finding g(4) = k and f(k) = or fg(x) = \ln\left(\frac{4}{x-3}-1\right) f(2) = \ln(2x2-1) fg(4) = \ln(4-1) g = \ln(2x-1) \Rightarrow e^3 = 2x-1 \text{or} e^x = 2y-1 f^{-1}(x) = \frac{1}{2}(e^x+1) \text{Allow} \Re = \frac{1}{2}(e^x+1) Domain x \in \Re [Allow \Re, all reals, (-\infty, \infty)] independent (c) \frac{1}{x} = $		$x = \sqrt{\frac{1}{3 - x}} \tag{*}$			(2)
1st B1 is for one correct, 2^{nd} B1 for other two correct If all three are to greater accuracy, award B0 B1 (c) Choose values in interval $(0.6525, 0.6535)$ or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ 101 At least one correct "up to bracket", i.e. -0.0005 or 0.002 A1 A1 (a) Requires both correct "up to bracket" i.e. -0.0005 or 0.002 A1 A1 (ii) Continued iterations at least as far as x_6 M1 $x_5 = 0.65268$, $x_6 = 0.6527$, $x_7 =$ two correct to at least 4 s.f. A1 Conclusion: Two values correct to 4 d.p., so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527$, $x_7 =$ two correct to 3 d.p. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527$. $x_7 =$ two correct to at least 4 s.f. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527$. $x_7 =$ two correct to at least 4 s.f. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527$. $x_7 =$ two correct to at least 4 s.f. A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527$. $x_7 =$ two correct to at least 4 s.f. A1 A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527$. $x_7 =$ $g(0.6525) = 0.6527$.		[Reverse process: Squaring and non-fractional equation M1, form $f(x)$ A1] (b) $x_2 = 0.6455$, $x_3 = 0.6517$, $x_4 = 0.6526$ 1^{st} B1 is for one correct, 2^{nd} B1 for other two correct If all three are to greater accuracy, award B0 B1 (c) Choose values in interval $(0.6525, 0.6535)$ or tighter and evaluate both $f(0.6525) = -0.0005$ (372 $f(0.6535) = 0.002$ (101 At least one correct "up to bracket", i.e. -0.0005 or 0.002 Change of sign, $\therefore x = 0.653$ is a root (correct) to 3 d.p.			
$ \begin{array}{c} \text{f}(0.6525) = -0.0005 \ (372 & \text{f}(0.6535) = 0.002 \ (101 \\ \text{At least one correct "up to bracket", i.e0.0005 or 0.002} \\ \text{Change of sign, } \therefore x = 0.653 \text{ is a root (correct) to 3 d.p.} \\ \text{Requires both correct "up to bracket" and conclusion as above} \\ \text{All (i)} \\ \text{Continued iterations at least as far as } x_6 & \text{M1} \\ x_8 = 0.65268, x_6 = 0.6527, x_7 = & \text{two correct to at least 4 s.f.} & \text{A1} \\ \text{Conclusion: Two values correct to 4 d.p., so 0.653 is root to 3 d.p.} & \text{A1} \\ \text{If use g}(0.6525) = 0.6527 > 0.6525 & \text{and g}(0.6535) = 0.6528 < 0.6535 & \text{M1A1} \\ \text{Conclusion: Both results correct, so 0.653 is root to 3 d.p.} & \text{A1} \\ \text{Sinding g}(4) = k & \text{and f}(k) = & \text{or fg}(x) = \ln\left(\frac{4}{x-3}-1\right) & \text{M1} \\ \text{If }(2) = \ln(2x2-1) & \text{g}(4) = \ln(4-1) & \text{g.s.} & \text{m.s.} \\ \text{If }(3) = \ln(2x2-1) & \text{g.s.} & \text{g.s.} & \text{g.s.} & \text{g.s.} \\ \text{If }(3) = \frac{1}{2}(e^x+1) & \text{Allow } y = \frac{1}{2}(e^x+1) & \text{A1} \\ \text{Domain } x \in \Re & \text{[Allow } \Re, \text{ all reals, } (-\infty, \infty)] & \text{independent} \\ \text{Shape, and } x = 3 \\ \text{should appear to be asymptote} \\ \text{Equation } x = 3 \\ \text{needed, may see in diagram (ignore others)} \\ \text{Intercept } (0, \frac{2}{3}) \text{ no other; accept } y = \frac{2}{3} \\ \text{(0.67) or on graph} \\ \text{M1}, \text{A1} & \text{(3)} \\ \text{M2} & \text{M3} & \text{M3} & \text{M3} \\ \text{M3} & \text{M4} & \text{M4} \\ \text{M4} & \text{M5} & \text{M5} \\ \text{M5} & \text{M6} & \text{M6} & \text{M6} \\ \text{M6} & \text{M6} & \text{M6} & \text{M6} \\ \text{M7} & \text{M7} & \text{M7} & \text{M7} \\ \text{M8} & \text{M8} & \text{M8} & \text{M8} \\ \text{M8} & \text{M8}$	(b)				(2)
Alt (i) Continued iterations at least as far as x_6	(c)				(3)
Alt (ii) Alt (iii) Alt (iiii) Alt (iii) Alt (iii) Alt (iii) Alt (iii) Alt (iiii) Alt (iiii) Alt (iiii) Alt (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				(7 ma	arks)
5. (a) Finding $g(4) = k$ and $f(k) =$ or $fg(x) = \ln\left(\frac{4}{x-3} - 1\right)$ M1 [$f(2) = \ln(2x2 - 1)$		$x_5 = 0.65268$, $x_6 = 0.6527$, $x_{7} =$ two correct to at least 4 s.f. A1 Conclusion: Two values correct to 4 d.p., so 0.653 is root to 3 d.p. A1 If use $g(0.6525) = 0.6527>0.6525$ and $g(0.6535) = 0.6528<0.6535$ M1A1 Conclusion: Both results correct, so 0.653 is root to 3 d.p. A1			
Finding g(4) = k and f(k) = or fg(x) = $\ln \left(\frac{x}{x-3} - 1 \right)$ M1	Alt (ii)				
$f^{-1}(x) = \frac{1}{2}(e^{x} + 1) \qquad \text{Allow } y = \frac{1}{2}(e^{x} + 1) \qquad \text{Al}$ $Domain } x \in \Re [\text{Allow } \Re, \text{ all reals, } (-\infty, \infty)] \text{independent} \qquad \text{B1} \qquad (4)$ $(c) \qquad \qquad$	(a)				
$f^{-1}(x) = \frac{1}{2}(e^{x} + 1) \qquad \text{Allow } y = \frac{1}{2}(e^{x} + 1) \qquad \text{Al}$ $Domain } x \in \Re [\text{Allow } \Re, \text{ all reals, } (-\infty, \infty)] \text{independent} \qquad \text{B1} \qquad (4)$ $(c) \qquad \qquad$	(h)	$ [f(2) = \ln(2x2 - 1) $	$= \ln 3$		(2)
Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$] independent B1 (4) Shape, and x -axis should appear to be asymptote Equation $x = 3$ needed, may see in diagram (ignore others) Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph (d) $\frac{2}{x-3} = 3 \implies x = 3\frac{2}{3}$ or exact equiv. $\frac{2}{x-3} = -3$, $\Rightarrow x = 2\frac{1}{3}$ or exact equiv. Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is MOAO	(D)			·	
Shape, and x-axis should appear to be asymptote Equation $x = 3$ needed, may see in diagram (ignore others) Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph $\frac{2}{x-3} = 3 \implies x = 3\frac{2}{3} \text{ or exact equiv.}$ Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is MOAO		2	l independent		(4)
$(d) \frac{2}{x-3} = 3 \Rightarrow x = 3\frac{2}{3} \text{or exact equiv.}$ $\frac{2}{x-3} = -3 , \Rightarrow x = 2\frac{1}{3} \text{or exact equiv.}$ $Note: 2 = 3(x+3) \text{ or } 2 = 3(-x-3) \text{ o.e. is MOAO}$ $Reded, \text{ may see in diagram (ignore others)}$ $Intercept (0, \frac{2}{3}) \text{ no other; accept } y = \frac{2}{3} \text{B1 ind.}$ $(0.67) \text{ or on graph}$ $B1$ $M1, A1 (3)$	(c)		Shape, and <i>x</i> -axis should appear to be		
Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ B1 ind (3) $(d) \frac{2}{x-3} = 3 \Rightarrow x = 3\frac{2}{3} \text{or exact equiv.}$ $\frac{2}{x-3} = -3, \Rightarrow x = 2\frac{1}{3} \text{or exact equiv.}$ Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is M0A0		$\frac{2}{3}$ $x = 3$	needed, may see in diagram (ignore	B1 ind.	
$\frac{2}{x-3} = -3 , \implies x = 2\frac{1}{3} \text{ or exact equiv.}$ Note: $2 = 3(x+3) \text{ or } 2 = 3(-x-3) \text{ o.e. is M0A0}$		O 3 x	Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$	B1 ind	(3)
Note: $2 = 3(x + 3)$ or $2 = 3(-x - 3)$ o.e. is M0A0	(<i>d</i>)			B1	
			M1, A1	(3)	
	Alt:		ving M1; B1A1	(12 ma	arks)

6.	(a)	Complete method for R: e.g. $R\cos\alpha = 3$, $R\sin\alpha = 2$, $R = \sqrt{(3^2 + 2^2)}$	M1
		$R = \sqrt{13}$ or 3.61 (or more accurate)	A1
		Complete method for $\tan \alpha = \frac{2}{3}$ [Allow $\tan \alpha = \frac{3}{2}$]	M1
		$\alpha = 0.588$ (Allow 33.7°)	A1 (4)
	(<i>b</i>)	Greatest value = $\left(\sqrt{13}\right)^4 = 169$	M1, A1 (2)
	(c)	$\sin(x+0.588) = \frac{1}{\sqrt{13}}$ (= 0.27735) $\sin(x + \text{their } \alpha) = \frac{1}{\text{their } R}$	M1
		(x + 0.588) = 0.281(03) or 16.1°	A1
		$(x + 0.588)$ = $\pi - 0.28103$ Must be π - their 0.281 or 180° - their 16.1°	M1
		or $(x + 0.588)$ = $2\pi + 0.28103$ Must be $2\pi +$ their 0.281 or $360^{\circ} +$ their 16.1°	M1
		x = 2.273 or $x = 5.976$ (awrt) Both (radians only)	A1 (5)
		If 0.281 or 16.1° not seen, correct answers imply this A mark	(11 marks)

Notes: (a) 1st M1 for correct method for R

 2^{nd} M1 for correct method for tan α

No working at all: M1A1 for $\sqrt{13}$, M1A1 for 0.588 or 33.7°.

N.B. Rcos $\alpha = 2$, Rsin $\alpha = 3$ used, can still score M1A1 for R, but loses the A mark for α . $\cos \alpha = 3$, $\sin \alpha = 2$: apply the same marking.

- (b) M1 for realising $\sin(x + \alpha) = \pm 1$, so finding R⁴.
- (c) Working in mixed degrees/rads: first two marks available Working consistently in degrees: Possible to score first 4 marks [Degree answers, just for reference only, are 130.2° and 342.4°] Third M1 can be gained for candidate's 0.281 candidate's $0.588 + 2\pi$ or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.
- Alt: (c) (i) Squaring to form quadratic in $\sin x$ or $\cos x$ M1 $[13\cos^2 x 4\cos x 8 = 0, 13\sin^2 x 6\sin x 3 = 0]$ Correct values for $\cos x = 0.953...$, -0.646; or $\sin x = 0.767$, 2.27 awrt A1 For any one value of $\cos x$ or $\sin x$, correct method for two values of x M1 x = 2.273 or x = 5.976 (awrt) Both seen anywhere A1 Checking other values (0.307, 4.011) or (0.869, 3.449) and discarding M1
 - (ii) Squaring and forming equation of form $a \cos 2x + b \sin 2x = c$ $9 \sin^2 x + 4 \cos^2 x + 12 \sin 2x = 1 \Rightarrow 12 \sin 2x + 5 \cos 2x = 11$ Setting up to solve using R formula e.g. $\sqrt{13} \cos(2x - 1.176) = 11$ M1

$$(2x-1.176) = \cos^{-1}\left(\frac{11}{\sqrt{13}}\right) = 0.562(0... \quad (\alpha)$$
 A1

$$(2x-1.176) = 2\pi - \alpha, \ 2\pi + \alpha,...$$
 M1
 $x = 2.273$ or $x = 5.976$ (awrt) Both seen anywhere

Checking other values and discarding M1

Question Number	Scheme	Marks
7. (a)	$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}$ M1 Use of common denominator to obtain single fraction	M1
	$= \frac{1}{\cos \theta \sin \theta}$ M1 Use of appropriate trig identity (in this case $\sin^2 \theta + \cos^2 \theta = 1$)	M1
	$= \frac{1}{\frac{1}{2}\sin 2\theta}$ Use of $\sin 2\theta = 2\sin \theta \cos \theta$ $= 2\csc 2\theta (*)$	M1 A1 cso (4)
Alt.(a)	$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta}$ M1	A1 CSO (4)
	$=\frac{\sec^2\theta}{\tan\theta}$ M1	
	$= \frac{1}{\cos\theta\sin\theta} = \frac{1}{\frac{1}{2}\sin 2\theta} $ M1	
(<i>b</i>)	$= 2 \csc 2\theta (\clubsuit) (cso) A1$ If show two expressions are equal, need conclusion such as QED, tick, true.	
	Shape (May be translated but need to see 4"sections")	B1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 dep. (2)
(c)	$2\csc 2\theta = 3$ $\sin 2\theta = \frac{2}{3}$ Allow $\frac{2}{\sin 2\theta} = 3$ [M1 for equation in $\sin 2\theta$]	M1, A1
	$(2\theta) = [41.810^{\circ}, 138.189^{\circ}; 401.810^{\circ}, 498.189^{\circ}]$ 1st M1 for α , 180 – α ; 2 nd M1 adding 360° to at least one of values $\theta = 20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$ (1 d.p.) awrt	M1; M1
Note	1^{st} A1 for any two correct, 2^{nd} A1 for other two Extra solutions in range lose final A1 only SC: Final 4 marks: θ = 20.9°, after M0M0 is B1; record as M0M0A1A0	A1,A1 (6)
Alt.(c)	$\tan \theta + \frac{1}{\tan \theta} = 3$ and form quadratic, $\tan^2 \theta - 3 \tan \theta + 1 = 0$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above)	
	Solving quadratic $[\tan \theta = \frac{3 \pm \sqrt{5}}{2} = 2.618 \text{ or } = 0.3819]$ M1	
	$\theta = 69.1^{\circ}, 249.1^{\circ}$ $\theta = 20.9^{\circ}, 200.9^{\circ}$ (1 d.p.) M1, A1, A1 (M1 is for one use of $180^{\circ} + \alpha^{\circ}$, A1A1 as for main scheme)	(12 marks)

Question Number	Scheme		Marks
8. (a)	$D = 10, t = 5, \qquad x = 10e^{-\frac{1}{8} \times 5}$	M1	(2)
(b)	$= 5.353$ awrt $D = 10 + 10e^{-\frac{5}{8}}, t = 1, \qquad x = 15.3526 \times e^{-\frac{1}{8}}$ $x = 13.549 (\clubsuit)$	M1 A1	(2) cso (2)
Alt.(b)	$x = 10e^{-\frac{1}{8}\times6} + 10e^{-\frac{1}{8}\times1}$ M1 $x = 13.549$ (*) A1 cso		
(c)	$15.3526e^{-\frac{1}{8}T} = 3$	M1	
	$e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$		
	$-\frac{1}{8}T = \ln 0.1954$	M1	
	T = 13.06 or 13.1 or 13	A1	(3)
			(7 marks)

Notes: (b) (main scheme) M1 is for $(10+10e^{-\frac{5}{8}})e^{-\frac{1}{8}}$, or $\{10+\text{their}(a)\}e^{-\frac{1}{8}}$

N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0

(c)
$$1^{st}$$
 M is for $(10+10e^{-\frac{5}{8}}) e^{-\frac{T}{8}} = 3$ o.e.

 2^{nd} M is for converting $e^{-\frac{T}{8}} = k$ (k > 0) to $-\frac{T}{8} = \ln k$. This is independent of 1^{st} M.

Trial and improvement: M1 as scheme,

M1 correct process for their equation (two equal to 3 s.f.)

A1 as scheme